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Introduction

The development of a Boundary Integral Equation Method (BEM) for the prediction of

ducted fan engine noise is discussed. The method is motivated by the need for an efficient and

versatile computational tool to assist in parametric noise reduction studies. In this research, the

work in reference 1 was extended to include passive noise control treatment on the duct interior.

The BEM considers the scattering of incident sound generated by spinning point thrust

dipoles in a uniform flow field by a thin cylindrical duct. The acoustic field is written as a

superposition of spinning modes. Modal coefficients of acoustic pressure are calculated term by

term.

The BEM theoretical framework is based on Helmholtz potential theory. A boundary value

problem is converted to a boundary integral equation formulation with unknown single and double

layer densities on the duct wail. After solving for the unknown densities, the acoustic field is easily

calculated.

The main feature of the BIEM is the ability to compute any portion of the sound field without

the need to compute the entire field. Other noise prediction methods such as CFD and Finite

Element methods lack this property. Additional BIEM attributes include versatility, ease of use,

rapid noise predictions, coupling of propagation and radiation both forward and aft,

implementable on midrange personal computers, and valid over a wide range of frequencies.





Accomplishments

Given a locally reacting, segmented liner model on the duct interior, a system of boundary

integro-differential equations for the scattered acoustic pressure field was derived (references 2

and 3). The equations are hypersingular and require special analytical and computational

techniques to solve. These methods are near completion.

For small inflow Mach numbers (M<0.4), the complexity of the integra equations can be

significantly reduced. The small Mach number BIEM has been determined to be valid at takeoff

and approach. Mathematical details of the derivation and solution techniques will in reference 2.

BIEM methodology and several passive and active noise control studies were presented at

the NASA AST Engine/Nacelle Noise Workshop (reference 3). In this presentation, the accuracy,

versatility and simplicity of the BEM were demonstrated.

A computer program for predicting ducted fan engine noise (TBEM3D) and user manual

(reference 4) has been written. The TBEM3D code was designed for general use by the

aeroacoustics community and is available electronically.

BIEM methods were applied to sound radiation and propagation in two dimensions. The

resulting methodology is valid for the shielding of sound by thin strips (wings) and the radiation

and propagation of sound in a finite length channel. The 2-D channel configuration is an excellent

tool for studying the effects of a scarfed inlet on noise directivity (see reference 5). A general use

2D noise prediction computer program (TBIEM2D) and user manual are near completion





Conclusions

The effectiveness of BIEM as a tool for active and passive noise control has been clearly

demonstrated. Due to the simplicity, speed, accuracy, and versatility of BIEM, TBEM3D is far

superior to wave envelope and CFD codes for conducting parametric noise reduction studies.

The implicit coupling of sound radiation and propagation both forward and aft are unique

features of BIEM. In addition, the far field radiation condition is satisfied implicitly.

Consequently, special boundary conditions at an artificial far field boundary and at the duct's inlet

and exhaust planes are not required. These theoretical niceties further enhance the simplicity of

BEM.
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A computationally efficient Boundary Integral 13
Equation Method (BIEM) for the prediction of ducted
fan engine noise is presented. The key features of the N_

BIEM are its versatility and the ability to compute rap- _, f)

idly any portion of the sound field without the need to Mm '
compute the entire field. Governing equations for the a
BIEM are based on the assumptions that all acoustic

processes are linear, generate spinning modes, and oc-
cur in a uniform flow field. An exterior boundary value b

problem (BVP) is defined that describes the scattering

of incident sound by an engine duct with arbitrary pro- Lo
file. Boundary conditions on the duct walls are derived

that allow for passive noise control treatment. The BVP m

is recast as a system of hypersingular boundary integral k

equations for the unknown duct surface quantities.

BIEM solution methodology is demonstrated for the kz
scattering of incident sound by a thin cylindrical duct
with hard walls. Numerical studies are conducted %r

various engine parameters and continuous portions of K

the total pressure field are computed. Radiation and p,
duct propagation results obtained are in agreement with

the classical results of spinning mode theory for infinite
ducts. P"

denotes that a quantity is dimensional
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cylindrical coordinates - stationary frame

ttrne

axial coordinate - stretched, moving

frame

maximum fan radius

radial coordinate of duct exterior

(interior) profile

ambient density

ambient sound speed

forward flight speed

= Vr/c forward flight Mach number

= ,fi- M_ stretching parameter

number of fan blades

shaft speed

= ?._,_/_ tip Mach number

axial coordinate of duct trailing edge in

stretched, moving frame

axial coordinate of duct leading edge in

stretched, moving frame

ratio of duct length to duct diameter

circumferential mode number

= mMr_ characteristic wave number of

m-th circumferential mode

axial wave number for f'trst radial mode

and m-th circumferential mode

= k/13 modified wave number

Eulerian description of total acoustic

pressure field

Eulerian description of scattered acoustic

pressure field

Eulerian description of incident acoustic

pressure field

Eulerian description of normal component

of acoustic velocity field

0/0n normal derivative operator in stationary.

frame (with respect to outward facing

normal to duct surface)

0/0N normal derivative operator in stretched,

moving frame (with respect to outward

facing normal to stretched duct surface)

_ surface acoustic impedance for duct

exterior (interior)



Introduction

Ducted fan engine noise is dominated by the fan

component at takeoff and approach. Community expo-

sure '.o the higi'l levels of radiated fan noise at these
conditions is significant. The reduction of tonal noise

produced by the rotating components of high by-pass

turbot'an engines is therefore of primary concern to the

aeroacoustician. The design of active and passive noise

abatement technology can be facilitated by advanced
analytical tools for predicting the radiated sound from

engine ducts. To be useful in design studies, prediction

tools should be fast, versatile, accurate, and impte-

mentable on mainstream computer systems. The ability

to compute only a portion of the sound field without the
need to calculate the entire field is an important attrib-

ute in conducting rapid noise predictions. Computa-

tional approaches such as Finite Element Methods

(FEM) and Computational Aeroacoustics (CAA) meth-
ods lack this property. For this reason, farfield noise

calculations using FEM or CAA require vast amounts of

computational time and computer storage. Therefore,

the use of FEM and CAA for parametric studies in noise
abatement research is limited.

In this paper, a Boundary. Integral Equation Method

for the prediction of ducted fan engine noise is pre-
sented. The method is based on the equations of line-

anzed acoustics with uniform inflow. A scattering ap-

proach is adopted in which the acoustic pressure field is

split into known incident and unknown scattered com-

ponents. The source process is assumed to generate an

incident pressure field that can be represented by a su-

perposition of spinning modes. In a frame of reference
moving with the engine duct and in regions of space not

occupied by acoustic sources or scattering surfaces, the

components of acoustic ,_ressure are governed by

Helmholtz' equation. An exterior boundary value

problem is obtained by the inclusion of boundary con-
ditions on the duct surfaces. The most general form of

the boundary conditions allows for a spatially varying,

!orally reacting liner model on the duct surface.

By considering special values of the specific

acoustic impedance in the boundary conditions, the
classical Dirichlet and Neumann boundary, values are

obtained. The boundary, value problem is then solved

by expressing the scattered pressure field in terms of

double and single layer Helmhottz potentials with un-
known densities that are related to surface pressure and

the normal derivative of surface pressure, respectively.

Application of the boundary, conditions to the laver rep-

resentation yields a system of one-dimensional, hypers-
ing,-lar boundea?' integral equations for the unknown

'.a',cr dcnsi:ics. The ;ource terms :'or :he system are
related to tile known incident pressure and its normal

American institute of Aeronautics and Astronautics

derivative. This system of boundary integral equations

and method of solution comprise the BFEM.

The system of boundary integral equations is valid
tbr engine ducts with arbitrary profile. If, however, the

duct is approxmaated by an infinitesimally thin cylindri-

cal tube, the complexity of the integral equation kerneis
is substantially reduced.

Analytical results will be presented that separate

the singular and logarithmic portions of the integral

equation kernels from the bounded parts. This analysis

is significant because calculations revolving singular

and logarithmic integrals are available in closed form.
thus avoiding time consuming, customized numerical

integration techniques.

To demonstrate the BIEM, the solution procedure

for a thin pipe geometry with hard wall boundary con-

ditions is presented. A collection of spinning point di-

poles located inside the duct are used to simulate the

loading component of the fan noise and generate the
incident pressure field. Several sets of engine operating

parameters are considered in this study. Various re-

searchers _'_ have employed boundary integral tech-

niques to solve this problem. Differences in the present

work relative to the referenced works appear in the

conclusions section of this paper.

Boundary_ Value Problem Derivation

In the analysis that follows, all quantities have been

nondimensionalized; length by ?_,_, mass by - -3P or,,.,_,,

and time by _-'.

We consider an engine fan surrounded by an axi-

symmetric, nondeformable duct of arbitrary profile

translating in the _z (axial) dia'ection with aniform

speed V r (see figure 1). The fan is composes of Na

equally spacect blades and rotates with shaft speed _2.

The incident acoustic pressure field generated by the fan

is known. Linear conditions are assumed to apply and
the inflow is uniform.

(z) r t=0

r; (z) [
I

_3a _b z

Figure I: Duct Geometry

(Cylindrical. Stationary. Coordinates;



Governing Differential Equations

The total acoustic pressure in the sound

written as a sum of incident and scattered parts.

field is

p: (r,w,z.t)= pl (r,,v, z, t)+ p: (r, vt,, z, t ) (l)

In regions of space that contain no scattering surfaces,

p' is governed by the homogeneous wave equation.

- r &,. p;=0 (2)&2 r r = 3W"

Total acoustic pressure and acoustic velocity are

related through the normal component of the acoustic

momentum equation.

Ou.(r,w,z,t) C-'p;(r, ,v, z. t)
+ = 0 (3)

Ot g-n

In a frame of reference moving with the duct, all

dependent acoustic variables can be expressed as linear

super'positions of spinning modes. For example, the

scattered pressure has the form

p;(r,v,Z,t) = iP? (r,Z)e _m(c_-') (4a)
m/N_ =-**

and the acoustic velocity, is written

u, (r, qJ,Z, t) = iU_ (r,Z)e i_ca-') , (4b)

where the stretched, moving axial coordinate Z is given

by

Z- VFt
z = _ (5)

The BIEM calculates modal amplitudes in (4) term by
term. For notational convenience, the superscript m on

the modal coefficients is dropped hereafter.

Define the dependent variables Q, and O, by

and

Q,(r,Z) = P,(r,Z)e _o''z (6a)

O.(r.Z)=Ux(r,Z)e '_'z, (6b)

with similar definitions for the total and incident pres-

sures. Combining (,i-6) with (2) yietds the _vo dimen-

sional Helmholtz equation

E m:]13 r-_. -+ +K:'- Q, =or_ aZ" r'-
(7)

for the m-th coefficient. Using the definitions in (6),

the momentum equation (3) can be written as

i i_-_-z

®.(r,Z)=-e
¢

a

e M, i_,I_N_Q, dZ'
F _-N'

(s)

where N _ is the axial component of the ourward facing,
unit normal to the stretched duct surface. Equation (8)

is valid for M r > 0.. If the duct is stationary. (M F = 0 ),

then (7) and (8) reduce to

and

F ]!L(r + +<: P,=O
Lrert' " &: r=

(9)

1 6P,(r,Z)

U_ (r,Z)_ ick On -0. (I0)

Equations (7-10) are valid for points not lying on the
surface of the stretched duct.

Boundary Conditions

To meet noise certification levels it is necessary to

treat the engine duct with passive noise suppression

technology. In this work, the duct treatment is modeled

by a locally reacting, axially varTing liner.

Define the surface functions Q,= and • =,_by

and

Q,*(Z)= liraQ,(r,Z) Z_[a,b] (lla)

O_(Z)= lira (1)x(r,Z) Z_[a,b] (lib)
,-.,gCz)

with similar definitions for Q_, Q_:, normal velocity.,

and all pressure components.

Myers 6 has shown that if _'-(Z) represents the

specific acoustic surface impedance, then, in the

stretched, moving frame of reference, the modal coef-
ficients of velocity and pressure satisfy, the boundary.

equation

, t3 az C(z) -°

American institute of Aeronautics and Astronautics



Equation(12)representstwoboundaryconditions,one
for ±e exteriorsurfaceandtheotherfor theinterior
surface.The boundary condinons for the stationary
case reduce to

W-(z)
U_(Z)+--" =0 Z _[a,b]. (13)

<=(z)

By considering special values for the functions 5,'-

in (12) and (13'), several boundary+ conditions of interest

are derivable. Total sound absorption is achieved if

" = _- = constant --+ 0. (14)

Total sound reflection (hard walls) arises for

<" -,'- (15),_ - _ = constant --_ co.

Of particular relevance to actual engine ducts, is the

case of a hard exterior surface (q" -* _o) and lined in-

terior. The boundary conditions for this situation are

O_(Z) =0 Z _[a,b] (16a)

and

O_+(Z)+(I+M_' _3 0Z)0"_Q'(Z)=0(-(Z) Z_[a,b].(16b)

We now evaluate the momentum equation on the

duct surface to obtain a relation between surface pres-

sure and surface velocity. Let

OQ,) _ aQ,(r,Z)
a,--'N (Z)= lim (17))

with normal derivatives of other dependent acoustic

variables evaluated on the duct surfaces similarly de-

tined. Then from (8), (10), and (11) we get

and

z

i _, *--L-z°
e M,

,'--Z

(Z) I ,,,N . =--e x
c

13 (C_Q,I'+_i_M_NzQ_
M_ _,aN')

z >o

t ( oe, I+"
u: (z) = - +-T£-1 (z)

z M,:o

dZ'
(18)

(I9)
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Classical boundary conditions are obtained for the

stationary case. Combining (13) and (19) yie:ds the

Robin's boundary, conditions

_+'(Z) ick =0 Z_[a,b].
(20)

Dirichlet or Neumann conditions are obtained by appli-
cation of (14) or (15), respectively, to (20).

We complete the derivation of the boundary, value

problem by requiring the dependent acoustic variables
to satisfy the appropriate Sommerfeld radiation condi-

t-ion. Additional conditions may apply depending on the

smoothness of the duct walls. If there are points on the
duct that do not possess continuously turning tangent

planes, then edge conditions specifying the behavior of
the acoustic pressure at these points must be provided 7.

Edge behavior is determined from the physics of the

problem together with an asymptotic analysis of the

governing equations in a neighborhood of the edge.

This problem occurs at the leading and trailing edges of

the thin pipe approximation, for example.

Summary

The above analysis describes a uniquely solvable

two dimensional boundary value problem for the scat-

tered acoustic pressure in the sound field. For the sta-

tionary case, the boundary value problem is defined by

(1), (9), (19), (20), the radiation condition, and the edge

conditions (if applicable). [f the duct is in motion, then

(I), (6), (7), (12), (18), radiation and edge conditions

completely define the boundary, value problem.

l_gundarv Intem'al Eauation Formulation

In this section, we reformulate the boundary, value

problem by deriving one dimensional boundary, integral

equations in which the boundary functions Q,_ and Q._+

are unknown, where

Q_(Z) _, 0"N ) (Z). (2t)

Once the scattered boundary functions are determined,

the scattered pressure in the sound field is calculated

point'wise via a Helmhoitz layer representation that sat-
isfies the Sommerfeld radiation condition implicitly.

Helmholtz Layer Reoresentation

The Green's function for the _vo dimensionai



Helmholtzoperatorin (7)canbewritten

[ [" e -.r,.R

G (r, r', Z - Z') = _ d cos my T dv (22)
0

where

R = v/r: +r '_ -2rr' cos_ +(Z-Z')'- . (23)

Using results from Helmholtz potential theory, s and

(21-23), the solution of (7) is expressed as the sum of

single and double layer Helmholtz potentials with den-

sities Q,_ and Q_, respectively. Thus,

Q,/,, =s-[Q ]Ir, [<]{,, +
z)-d-[< Z)

(24)

Equation (24) is valid everywhere except for(r,Z) on

the stretched duct surface. The field operators s-" and

d = are defined by

s: [f](,,Z)=
b

j L,'-.,_(z
a

and

d*[q(r,Z) =

1 (26)

L,_4(z') om j

where f is some sufficiently smooth function and

J=(Z')dZ' are the elements of arcleng_ along the

_,es : = _; (Z').
[f the boundary (unctions were known, then the

scattered acoustic field could be obtained from (24).

Singular Boundary_ ODerator Notation

In order to apply the boundary conditions to the

field equation (24), it is necessary to evaluate the 2-D

layer potentials and their derivatives on the stretched

duct surface. The resulting 1-D boundary operators are

singular. For Z _[a, b], define the following singular

bounda_ operator - kernel pairs:

s" If](z)=i r(z')s: (z, z,)az'
a

S:(Z Z')= I-_-.I:(Z ') lim
' 2_ ,'-,4{z'l

.... _Iz)

G
(27)

b

D:[f](z) =j r(Z')D: (z, Z')<'

_J_(z') ,.m --
D -_(Z,Z') = 2.n ,'-,,_{z') o_'q'

,-4,{z)

(28)

S =. [f](Z)= /f(Z')S_ (Z,Z')_Z'

S_(Z.Z')=_J:(Z') _im -=-7.,'--,,;;(z') oN
t_q{z)

(29)

D_[q(z) =f f(z')e; (z,z,)dz,
i

D_(Z,Z')=_I J-'(Z ') lim OZG
2_ ,,_,_(z') _NbRq '

,_,4(z)

(30)

s_[f](z) =f f(z')s_ (z, z')az'
at

--kJ:(Z') lira g'G
Sz (Z'Z')= 2= ' ,'-,41z'_ d_

,-.,_{z)

Dz [f](Z) = f f(Z')DI (Z,Z')dZ'
l

D_(Z,Z')--}-I J-*(Z ') tim a=G "
- 2.'t ,'_,gIz') OZb-'N'

,_,a(z)

(31

(32)

Note that operators are denoted by bold face type. The

kernels are singular for Z- Z' = 0. The nature of the

singularities is examined below.

Singular Kemet Analysis

We list here, without proof, the asymptotic proper-

ties tbr [Z-Z'[ << I of the above kernels. The singular

character of the kemets is obtained by local analyses,

the details of which will appear in a future publication:

S=(Z,Z')=g_3(Z)In!Z-Z"-K,(Z,Z ') (33)

D (z,z') = g_"(z)± _-4-

Z-Z'

g;, (Z)ln!Z- Z'l+ K: (Z,Z')

(34)

American Institute of Aeronautics and Astronautics 5



_,-" (z)
_32

s; z,z'):
Z-Z'

g_. (Z)h_iZ - Z' I_- K] (Z, Z')

,,: (z) g,--=(z)
D;(Z,Z')= _--÷

{z-z'): z-z'

_::] {Z)tnfZ- z'l + K, (Z, Z')

s_(z,z') = g,--,(z)
Z-Z'

g_,(z)intz- z'l + K_(Z,Z')

D_{Z,Z')= g_,(Z) +g_a(Z)
(Z-Z'): Z-Z'

gg,(Z)inlZ- Z'I+K,(Z,Z')

(35)

(36)

(37)

(38)

where g,_, and K_ are known continuous functions.

The leading behavior for the single layer kemel

(33) is logarithmic. Therefore, the associated operator
is weakly singular. The leading terms for the kernels

(34,35,37) are of the Cauchy type. Whilst, the kernels

(36,38) are of the strongly singular Hadamard type.

Consequently, integrals involved with the kernels (34-

38) are divergent and must be interpreted in the finite
10

pan sense .
All of the above kernels have the logarithmic por-

tions extracted. Integrations involving these terms are
def'med but difficult to achieve numerically. This

problem is mitigated by the development of analytical
results for the associated operators. Examples of this,

as well as analytical results for the Cauchy and

Hadamard terms, are presented in the results section.

Calculations involving the continuous portions of

the kernels are performed by straightforward numerical

integration.

Jump Relations from Potential Theory

Using the above operator notation, we state conti-

nuiw properties for the single and double layers as a

t]eld point approaches the surface from the exterior of

the duct. For sufficiently smooth f and r_ (except pos-

sibly at Z = a,b), we have the following results_ for

z_{a,b)

!irn s:[f](r,7)=S L,:x_/ (_':'9)
-_,4:z}

l_md_rf](r,Z)=-4f{Z)+D:[q(Z) (40)
,_4{z} _

lim _3,x_,Ns: [f](r,Z)--_ f(z)+s; [q(z}_ (..,.])

0 d±lira- [f](r,Z) = D_ [f](Z) (42)
_4{z} {SN

Boundary_ Integral Equations

A system of integral equations for Q_ and Q_ is

derived by applying the boundary conditions (I2) and
(18) to (24) and (39--42).

We begin by deriving some preliminary, results.

From (1), (6a), (1 la), (24), and (39-40) we write

and

Q_ (Z)= Q_(Z)+S= [Q_ ](Z)

+(I-D =)[Q,=](Z) Za[a,b]

c-e:_z(z)=c-'e:Tf(z)+s;.[Q_](z)

Z [a,b]

(43)

(44)

Combining (1), (6a), (17), (24), and (41-42) yieids

(I+S_,)[Q,_](Z)+D_[Q,_](Z) Z_[a,b]

Define the unknown surface vector functions C:I-" by

_I=(Z)=(Q,=(Z),Q;{Z)) r. (46)

Combining the boundary, conditions (12) and (18) with

results {33-a6) yields the system of integral equations

Z
_i ___.._Z.

jo
(47)

for the four unknown surface functions. The vector

function _1" is known from the incident pressure field

and the integral operators K_ and K._ have the general

form

American Institute ot" Aeronautics and Astronautics



A(z)_: (z)+ B(z) ,3_'(z)
0Z

f _--(z') - c_:(z') dZ,_-c(z) iiz_'?: dZ',-D(Zl) Z-Z' "(48)
a

b

Eiz)I _'-(z') tniZ- Z",dZ'+K. [Ca-"](Z)

where A,...,E are matrices of known functions and K B

is an inte_m'al operator with continuous kernels. The
matrix functions are determined from the coefficients in

(33-38) and depend on the sun'ace impedances and the

duct curves r= r_(Z'). Explicit expressions are

lengthy and will not be presented here.
Examination of (,-1.8) indicates that (47) is a system

of one dimensional, hypersmguiar, integro-differentiai

equations of the second kind. As indicated previously,

(47) must be augmented by a set of edge conditions if

applicable. The authors are not aware of any theory that
describes the solvability of (47). This subject is a mat-

ter of ongoing research. However, for certain simple
cases, one of which is described in the next section, (47)

is greatly simplified and solvability theorems do exist.
The characterization of the integral equation ker-

nels by (48) greatly simplifies the numerical solution of

(47). Analytical results for the logarithmic, Cauchy,
and Hadamard kernels are available in many cases tt and

the continuous portions of the kernel can be computed

by straightforward numerical integration.

Results

In this section, we consider the scattering of inci-

dent sound by an int-mitesimally thin cylindrical duct of

unit radius. The duct can be stationary, or in motion.
The interior and exterior walls of the duct are assumed

to be hard. For this case, the complexity of the bound-

ary integral equations is reduced significantly.

Boundary Integral Equation Formulation

From (12) and (18) the boundary conditions are

Z

e _" (Z')_' =0 Z_[a,b]. o9)

Differentiating (49) with respect to Z and using the re-

lationships be_veen total, scattered, and incident pres-

sures yields the boundary equations

) =Q;4- =0 Z_[a,b]. (50)

Since the incident pressure and its derivatives are con-
tinuous across the duct suit'ace we add the exterior and

interior equations in (50) to get

Q_ +Q_ =0 Z_[a,b]. (51)

Equation (51) is used below to simplify the field equa-

tion (24).

Define the jump in scattered pressure across the

duct wail by

AQ,(Z)=Q:(Z)-Q;(Z) Z_[a,b]. (52)

Referring to (25-26) observe that

d-[f](r,Z) = -d* [f](r,Z)

and

s" [f](r,Z)= s" [f](r,Z).

(53)

(54)

Thus, applying (51-54) to (24) produces the field equa-

tign

Q,(r,Z)=-d[AQ,](r,Z). (55)

Therefore, the scattered acoustic pressure in the sound

field is written as a double layer with density given by

the scattered pressure jump. Since the interior and ex-
tenor duct surfaces are the same, we have omitted the

superscript on the double layer operator.

A single integral equation for &Q, is obtained from

(49) as follows: Use (42) to evaluate the normal de-

rivative of (55) on the exterior wall, then combine this

result with the exterior boundary condition in (,-t9) to

give

Z it

[ ](e M, D_ AQ, Z')dZ'=

Z

f -' ,.,e _' (Z')_' Z

(56)

It is advantageous to rewrite (56) as the system of

equations

and

D, ](z)
GT ]r=t
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g[AQ,]= Co, (57b)

wherethefunctionalg isdefinedby

a < ,

g[f]: [ e-'"-=zO_[q(Z')aZ' (58)

and

c0 = fe-"+'z' _'[e, j,.,(Z')aZ'. (59)

Equation (57a) is obtained by differentiating (56), and
(57b) by evaluating (56) at the trailing edge. No infor-

mation is Iost by this reformulation. For the stationary,

case, (57b) is satisfied trivially. By performing a local

analysis on the kernel in (57a) it can be shown to have
the form

D_ (Z-Z') A
(z-z') 2 ,

8inlz-z'l+K_(z-z')

(60)

where A and B are known constants and the kernel K B

is continuous and simple to evaluate numerically.

To obtain a unique solution to (57a, b), the behavior

of the pressure jump at the duct leading and trailing

edges is required. It is known that the jump in pressure

has the following asymptotic behavior:

io( Tn- )z--,a"

I L,Jb-Z
Z _.._ b °

(61)

Based on _61) we assume a solution of the form

/b-Z
AQ, (Z)= c_.j-_- a ÷

_/(b-Z)(Z-a)y(Z)
(62)

where ct is an unknown constant and ";, is an unknown

continuous function. Note that if the duct is stationary,
then ct = 0.

A method is now developed in which the determi-

nation of 7 is separated from the caiculation of _.

This yields an integral equation for 7 that is relatively
simoie_.o_olve. Use(62) in ( 57b] to obtain

where

c0_..(_,_l[:]
a - (63)

i / " 1/_

g':":'[1]

._".')If]--._[(z-a)"(b-Z)_f] (6_)

The notation in (64) will be used with other integral

operators in the remainder of this analysis. Substituting
(62-62) in (57a) gives the first kind integral equation

K(_'_) [y ](Z): q(Z)Z _[a,b], (65)

where

and

K(_'_) [y](Z) D ('/z"'/J= _ [r](z)-

g(_'_)[y]D(_,-Y=)

I

q(z) ----&--L,.(z)-

Co D_"_l[_](z)z_b,b]
g(Z.-_l[l]

z_b,b]
(66)

(67)

The kernel for the operator in (66) has the same form as

(60). After solving (65) for y, (63) is used to caicutate

g..

N,_merical Solution

Due to the edge behavior associated with y, it is

natural to expand y in a series of Chebyshev polyno-

{}"rnials of the second kind. Thus, constants "[i j.o are

sought such that

where

i"[(Z)= riUi b-a '

Ui (x)= sin[(j+ I)cos-' x]

sin(cos"_)

(63)

(69)

Golberg 9 has shown that if _: is not an eigenfrequency
of K, then a unique convergent expansion such as (68)

exists for integral equations with kemets of the t-ype

given in i60).
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Tosolve(65)numerically,wetruncatetheexpan-
sionin (68)andapplythecollocationmethod.Other
popularprojectiontechniques,suchas Gaterkm's
method,requirean additionalnumericalintegration
relativeto collocation.Withproperchoiceof colloca-
tionpointsandnumericalquadratureschemefor the
continuousportionof thekernel,Golberg9hasshown
thattheaccuracyobtainedby Galerkin'smethodand
collocationareequivalentforthisproblem.Thus,col-
locationyieldsthesameaccuracyasGaterkin'smethod,
butwithsubstimtiallylesscomputationalwork.

The numericalsolutionbeginsby choosingthe
numberof termsin theexpansion(68),No+I. This
numberisafunctionof themodifiedwavenumberK.
If "7denotestheapproximatesolution,then

_' (2Z-a-b'_

l j (70)

are given by the ze-The collocation points, Zj j=L

roes of the N 0 + l-th Chebyshev polynomial of the first

kind and the numerical integration scheme t'or the con-
tinuous kernel is chosen as Gauss quadrature with

weights and nodes based on second kind Chebyshev

polynomials. Evaluating (65) at the collocation points

yields the linear system

KI 'n[u,](z,)--q(z,)
i-O

j= 1,...,N0 +1

(7t)

for the unknown expansion coefficients. The invertibil-

ity of the linear system has been established by Golberg.

To compute (71), integrals of the type

I

f 4T- ×,_U_(x,){L_,(×-._,):
°I

x _(-_, 1], (72)

I

;,/i-_'2u,(x')_<_-_'!ax ' x __(-_,_],
-I

(73)

and

I

-x, (×-x')' x
-I

-|

(75)

are encountered. Analytical results are obtained for
(72-75) by applying the Plemelj-Sokhotski theorem 7 and

its logarithmic analog to the complex fimction

with branch cut

IRe(w)l < : tm(w) = o.

The branch is det-med such that (w: -1) )_ is real and

positive if w is reat and greater than one. This analysis

yields the following results:

I

I d-_"u,(x')_'(___,):
°1

= -r_(j+ l) x

u](x} .__[-l,l]

x<-I
_x-' -1

(76)

I

I4S-_,2U0(V)In!x-<ax' =
-I

l _[-1,1]7r:(._)-in2 x

T,_ x+ ÷

(77)

(78)
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!1÷ X' dx' _

] _ l-x' (x-x'):

[(l-x) ,_xz-I

x<-I

179)

and

I

{"fl- inix-x'ldx'--
J VI--zV'
-]

x+in2 xe[-1,1]

x_-Ln2- ,_x:-l+
X<-I

(80)

In the above, Tj is the j-th order Chebyshev polynomial
of the first kind

(x)_-cos(jcos-,x). (81)

Examples

-['he analysis leading to the BIEM is independent of

:he fan noise source description. For illustrative pur-

poses, it is expedient to assume simplified source
mechanisms with analytical expressions for the incident

field. In the results presented here, a collection ofN s

equally spaced point axial dipoles of unit strength lo-

cated inside the duct at a radial distance 0.9% and

spinning with angular speed fl are used to simulate the

loading noise produced by the fan (see figure 2). An

anal_icaI description exists for the incident field in-

duced by this connguratzon . The use of more sophisti-

cated source processes is considered in the conctusmn
section.

To demonstrate the versatility of the BIEM, several

studies were conducted for the above problem. In each

study, continuous portions of the total acoustic pressure

field in the unstretched, moving flame were calculated.
The numerical methods described in (66-81) were im-

plemented on a Cray YMP computer at NASA Lang!ey
Research Center. For each set of parameters considered

in the studies, the computational time tbr both field and

integral equation calculations was 2-8 minutes. The

acousrlc ;]eids displayed are composed of 20,000-

-_),,,)L;L)ooser'¢er point cmcuiatlons.

In the f'Lrst study, N B = 20 point sources with tip
Mach number MT_ = 1.2, were used to simulate the

fan noise. Four forward flight Mach numbers (M F =
0.0, 0.2, 0.4, and 0.6) were considered. Field calcula-

tions in a plane perpendicular to the tan plane and paral-
lel to the duct axis are presentea in figure 3a-d.

An examination of the pressure fields inside the

duct reveals that the wavelengths of axial modes propa-
gating in the direction of motion decreases with increas-

ing M F. A spectral analysis of the axial wave structure

is beyond the scope of this work. However, the number

of waves per unit length of the dominant axial mode

present can be approximated by visual inspection. In
table 1, these observations are compared to the axial
wave numbers for the first radial mode from classical

spinning mode theory for ducts of infinite Ien@h. If

v represents the smallest zero of the function J '.,, then

the theoretical axial wave numbers are given by the
formula _2

(82)

where J,, is the m-th order BesseI function of the ftr'st

kind. Only propagating modes are considered. Note

that k_ < 0 corresponds to axial waves traveling from

the fan face to the inlet. The computed results appear to

be in a_eement with theory.

It is also noted that the angle between the !ine of

peak noise and the duct axis decreases with increasing

Mach number. This agrees qualitatively with the results
of Rice, oral. n.

M F

0.0

0.2

0.4

0.6

K

24.0

24.5

26.2

t .30.0

k,/2,'x k_/2,'t
(Theory) ] (Observed)

-1.44, +1.44 ] -|.5, *t.5

-2.47, +0.88 ] -2.5
i

-4.23, +0.59 I -a.0

-7.59, -0.43 ] " _,, - .... -0.5

Table 1' Propagation Properties for Figure 3 Results

(Mnr =1.2 L D =1.0 m=NB)

Using the same source configuration as above, _he

effects of increasing tip Mach number for fixed flight

Mach number M F = 0.8 were examined (see figure aa-

d and table 2). With regard to propagation and radiation

characteristics, similar comments as in the previous

study apply for cases 4a and 4b.

In cases 4c-d, the waves moving for-,vard in the
duct are in agreement wittl the tlaeore'ical results.

American Institute of ,Aeronautics and Astronautics I0



However,wavestravelingtowardtheexitarepresent
thatarenotaccountedt'orin thetheory.The modified

frequencies for these _vo cases are relatively close to

some eigenffequencies for the interior Dirichlet prob-

lem. That is, the eigenfrequencies are occurring at the

zeroes of J,,. There appear to be resonant radial modes

present. Condition numbers for the linear system (71)

at these frequencies increase significantly. The numeri-
cal results are therefore questionable. This phenomenon

has been well studied in the literature and is usually
associated wi{h ficticious interior eigenfrequencies

while solving exterior problems. The interested reader
is referred to the work of Kleinman and Roach _ for a

comprehensive theoretical discussion on the removal of

the ficticious eigenfrequencies. In the present work, the

interior is real and the eigenfrequencies are not neces-

__ariIy ficticious. Research into the subject is ongoing.

The authors believe that the ill conditioning can be

mitigated by the use of singular value decomposition
methods. We _rther contend that acoustic treatment of

the duct interior will eliminate the problem entirely.

M-m, K

0.5 i I6.70.7 23.3

0.9 I 30.01.1 36.7

none

-3.06. -6.84

k =/2=

(Observed)

none

-6.5

-t.02,-11.71 -11.5,+3.0

-0.04,-15.52 -15.0, +6.0

Table 2: Propagation Properties for Figure 4 Results

(M F =0.8 L D =0.5 m=N B)

The third example was chosen to demonstrate the

capability of the BIEM to computer higher harmonics

and different portions of the acoustic field (figure 5a-c).

[n this case, NB =16, Ms=0.2, and Mnp=l.7.

Sound pressure levels are plotted in an observer plane
two duct diameters beneath the duct. The kinematic

properties and the observer locations were selected to

correspond to those used for tests conducted with the
Langiey ducted propeller simulator _. Direct compari-

sons with the results in reference 15 are not possible

because of the simplified source model used for the

BIEM. The results do show, however, the ability of the

BIEM to compute the sound field in regions of interest.

Conclusions

The results presented here demonstrate that the
BIEM is a versatile and computationally efficient tool

for predicting ducted fan engine noise. Qualitative ra-

diation and duct propagation results can be obtained by

using simplified source modeis such as spinning point

or line sources. By tuning the strengths of the resulting

American lnsutute of Aeronautics and Astronautics

monopoles and dipoles to account for fan loading and

thickness effects, it is believed that the BIEM can pro-

duce results that are useml for quantitative studies.
Other boundary integral techniques have been de-

veloped tbr the problem of scattering of incident sound
by a thin duct with hard walls 14. The BIEM developed

here is valid for many situations of interest and features
extensive mathematical analyses on the integral equa-

tion kernels. The analvses yield expressions for singu-

lar and logarithmic integral operators that can be evalu-
ated in terms of known functions and continuous por-

tions that can be evaluated by simple numerical quadra-

ture schemes. This versatility, and depth of analysis.

absent in the referenced works, simplify the calculations

considerably.
Realistic duct geometry is included in the boundap/

integral equation formulation. Implementation of an

arbitrary duct profile requires the solution of a system
of two hypersingular integral equations. The inclusion

of a duct centerbody produces another integral equation

with the same properties. Both the duct profile and

centerbody have interior regions that produce ficticious

eigenffequencies for the Neumann or Dirichlet bound-

ary value problems. This difficulty can be alleviated in
several ways. The method of Burton and Miller t6 ap-

pears to be adaptable to the BIEM presented here. Fic-

ticious eigenfrequencies are not present if the engine

components are acoustically lined.
The use of passive noise control techniques are

included in the BIEM. A spatially varying, locally re-

active liner model appears in the boundary, conditions.

This property makes the BIEM attractive for active and

passive noise control design studies.
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Acoustic Radiation and Propagation for an Acoustically Treated Engine Duct

Via a Boundary Integral Equation Method

M. H. Dunn and J. Tweed

Old Dominion University

Norfolk, VA

F. Farassat

NASA Langley Research Center

Hampton, VA

Abstract

The prediction of ducted fan engine noise using a boundary integral equation method (BIEM) is

presented. Governing equations for the BIEM are based on the assumption that the duct is approximated

by a thin, finite length circular cylinder. Acoustic processes are assumed to be linear, generate spinning

modes, and occur in a uniform flow field. A mixed boundary value problem (BVP) is defined that

describes the scattering of incident sound by the cylinder.

wall allows for an axially segmented locally reacting liner.

The boundary condition on the duct interior

Using potential theory, the BVP is recast as a

system of hypersingular boundary integral equations for the unknown single and double layer potential

densities. BIEM derivations and solution methodology are demonstrated for the scattering of incident

sound generated by simple sources in a low speed uniform flow field. The key features of the BIEM are

its computational speed and efficiency, versatility, validity over a wide range of frequencies, and the

ability to compute rapidly any portion of the sound field without the need to compute the entire field.

Propagation results obtained are in agreement with the classical results of spinning mode theory for

infinite ducts. Various calculations are presented to illustrate the utility of the BIEM as a tool for

conducting active and passive noise control studies.
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Notation

denotes that a quantity is dimensional when appearing over a variable

axial coordinate of duct trailing edge in stretched, moving frame

axial coordinate of duct leading edge in stretched, moving frame

ambient sound speed

= mMrz _ characteristic wave number of m-th circumferential mode

ratio of duct length to duct diameter

circumferential mode number

= V'F/c" forward flight Mach number

= FD_/? tip Mach number

number of fan blades

Eulerian description of total acoustic pressure field

Eulerian description of incident acoustic pressure field

Eulerian description of scattered acoustic pressure field

cylindrical coordinates in stationary frame

duct radius

time

Eulerian description of acoustic velocity field

forward flight speed

axial coordinate in stretched, moving frame

specific surface acoustic admittance on duct exterior (interior)

= x/l- M 2 stretching parameter

2





/( - k/fl stretched characteristic wave number

ambient density

shaft speed (radians/second)

Introduction

The reduction of tonal noise radiated by turbofans is a subject of ongoing aeroacoustics research.

Advanced analytical tools for predicting the sound radiated from engine ducts can facilitate the design of

active and passive noise abatement technology. To be useful in design studies, prediction tools should be

fast, versatile, accurate, valid for a wide range of frequencies and engineering situations, and

implementable on mainstream computer systems. The ability to compute any portion of the sound field

without the need to calculate the entire field is an important attribute in this regard. Computational

approaches such as Finite Element Methods, CFD, and Computational Aeroacoustics lack this property.

Therefore, their usefulness for parametric noise reduction studies is limited.

In this paper, a Boundary Integral Equation Method (BIEM) for the prediction of ducted fan engine

noise is presented. The work is an extension of the B1EM discussed in reference 1"**. The method is

based on the equations of linearized acoustics with uniform inflow, and features analytical and

computational techniques that minimize the consumption of computer resources. We validate the BIEM

by reproducing qualitative propagation results from infinite duct theory. Various computational studies

are presented to demonstrate the effectiveness of the BIEM as a tool in the study of active and passive

noise control.

It is assumed that the engine duct is approximated by an infinitesimally thin, circular cylinder of finite

length. We adopt a scattering approach in which the acoustic pressure field is split into known incident

and unknown scattered components. The acoustic source processes are assumed to generate an incident

pressure field that can be represented by a superposition of spinning modes.





4

In a flame of referencemoving with the engine duct and in regionsof spacenot occupied by

scatteringsurfaces,themodalcomponentsof scatteredacoustic pressure satisfy Helmholtz' equation. An

exterior boundary value problem for the scattered pressure is obtained by including a far field radiation

condition and boundary conditions on the interior and exterior cylinder surfaces. The boundary

conditions allow for hard walls or a locally reacting liner that can be uniform or segmented.

We solve the boundary value problem by expressing the scattered pressure field as a sum of double

and single layer Helmholtz potentials with unknown densities. Application of the boundary conditions to

the layer representation yields a system of one-dimensional, singular boundary integral equations for the

layer densities. For uniqueness, conditions on the densities at the duct leading and trailing edges must be

imposed. The source terms for the system are related to the known incident pressure and its normal and

tangential derivatives. The system of boundary integral equations, edge conditions, and method of

solution comprise the BIEM.

***CITE DIFFERENCES WITH PREVIOUS WORK ON INTEGRAL EQUATION METHODS

FOR DUCTED FAN NOISE PREDICTION - MARTINEZ & THE FRENCH GUYS - NAMELY,

DEPTH OF KERNEL ANALYSIS, SOLVABILITY RESULTS, NOTATION, DESIGN TOOL.

Boundary Value Problem Derivation

We consider an engine fan surrounded by an infinitesimally thin, finite length circular cylinder

translating in the +_" (axial) direction with uniform speed ffF" The fan is composed of Ns equally

spaced blades and rotates with shaft speed _. The incident acoustic pressure field generated by the fan

is given. Linear conditions are assumed to apply and the inflow is uniform.

In the analysis that follows, all quantities are nondimensional: length by _, mass by _0_'_, and time

by _-1.
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Governing Differential Equations

In

The total acoustic pressure in the sound field is split into known incident and unknown scattered parts

p'(r,v/,z,t)= p,'(r,v/,z,t)+ p'(r,_,z,t). (1)

regions of space that contain no scattering surfaces, p_ is governed by the homogeneous wave

r - rZ , p'=0.c 2 Ot: r c_ 0)o,-" cgz_

Acoustic pressure and velocity are related through the acoustic momentum equation

equation

(2)

--+Vp' = o. (3)
c_

In a frame of reference moving with the duct, all dependent acoustic variables can be expressed as

linear superpositions of spinning modes. For example, the scattered pressure has the form

p'(r,_,Z,t) = _.,Ps"(r,Z)e _t-_'_ (4a)
_iN B =1

and the total acoustic velocity is written

_'(r,_,Z,t)=

_o

O"(r,Z)e ''t'-_'l , (4b)
rn/N s =1

where the stretched, moving axial coordinate Z is given by

Z--VFt
Z-

P

Incident and total acoustic pressures are written similarly.

Modal amplitudes in the BIEM are calculated term by

superscript m on the modal coefficients is dropped hereafter.

Define the dependent variables Q, Q_, Q,, and Vr by

Q(r,Z)= P(r,Z)e "_''z

(s)

term. For notational convenience, the

(6a)





Q_(r,Z) = P_(r,Z)e '_''z

6

(6b)

O,(r,Z) = P,(r,Z)e ''_'_z (6c)

l%(r,Z) = U,(r,Z)e '_''z (6d)

Combining (4-6) with (2) yields the two dimensional Helmholtz equation

7_-t, -_ +_z2 r: _'¢_Q:o (7)

for the m-th scattered coefficient. Using (3-6a), the m-th radial component of the momentum equation

(3) can be written as

Z

e Mp

e _t, l_(r,Z)- Mp c_r
--oo

(8)

If the duct is stationary, then (7) and (8) reduce to

] (9)

and

U,(r,z)- i OP (r,z).
mc_r

(10)

Equations (7-10) are valid for points not lying on the stretched duct.

Boundary Conditions

To meet FAA noise certification levels, it is necessary to treat the engine duct with noise suppression

devices. In this work, the duct treatment is modeled by a uniform or axially segmented locally reacting

liner. We consider the case of a hard exterior surface and lined (or hard) interior. To simulate actual

duct treatment, we impose hard wall conditions at and near the leading and trailing edges on the interior

wall.





Let f(r, Z) be an arbitrary field function.

f*-(Z)= lim f(r,Z)
r--_l

In reference 2***Myers

Define the surface function f(Z)

z _(,,,b).

BC*** it is shown that if and a represents the

by

acoustic surface admittance on the interior, then in the stretched, moving frame

boundary modal coefficients of velocity and pressure satisfy the boundary equations

(11)

piecewise constant specific

of reference, the

and

I,?+(Z) = 0 Z_(a,b) (12a)

iM_:(Z) d(-,-"z )-k;-(z)+ /32x dZ e ,_t,Q-(z)=o Z_(a,b). (lZb)

In the absence of flow, the boundary conditions reduce to

and

U;(z)=O z _(a,b). (13a)

-Ui(z)+ct(z)P (z)=O z _(a,b). (13b)

and

We use the acoustic momentum equation (8) to eliminate the normal velocity from the (12):

-,_--zrooY iM_(Z) a2 ( -,±_
-e M, ___) (Z)+ 13_Mr, t.x dZ 2 _.ie M, Q-_Z)=O) Z _(a.b). (14b)

i -_ +---z' ,_)e M" -_(I,Z')dZ'=O

-qo

(15)

Note that (15) is satisfied trivially for My --_ 0 and provides no information.

The thin duct approximation produces a surface with discontinuous tangents at the duct leading and

trailing edges. Consequently, there are infinitely many solutions to (14-15). For uniqueness, we must

constrain the acoustic pressure at the duct edges. At the trailing edge we impose the Kutta condition





For M F

Lm[Q-(z)-Q (z)]:o

> 0, the Kutta condition ensures infinite pressure at the leading edge.

8

(16)

For physically reasonable

solutions to exist we require the acoustic pressure to be integrable in any region of space about the

leading edge.

The boundary value problem is finalized by specifying the behavior of the acoustic pressure in the

farfield. To ensure that the acoustic field consists only of outgoing waves at infinity we impose the

Sommerfeld radiation condition

p=V_'r2+ Z 2 ___

(17)

Using (1) and assuming that the functions Qi and its derivatives are known, satisfy (17), and are

continuous on the duct surface, we rewrite the boundary value problem in terms of the scattered pressure:

lCg(r 8___]__ i_ m2 ]r Or _, Or) dZ 2 r 2 + !(2 Q" = 0
(18a)

(-_-)+(Z)-OQ'(I,Z)or Z_(a,b)
(18b)

,../]-'e Mj,
-(z)+p'_T,_ dZ2[ -"

(Z)- d_ (e M, 0

e u, e "" Q, l,Z) z c(a,b)

(18c)

-t_z' _g} -i _-5-z'

e M, _ (1,Z')dZ'=- e M, l,Z')dZ'
&

oo -oo

(18d)

t#.[o.:(z)-Q:(z)]:o
Z___ a+ t.

(18e)
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_Rany regionin r - Z plane (18f)

(18g)





Boundary Integral Equation Formulation

In this section, we convert the boundary value problem (18a-g) to

equations.

10

a system of boundary integral

Helmholtz Potential Representation

The Green's function for the two dimensional Helmholtz operator that satisfies the radiation condition

(18g) can be written as

where

1 _ e -t_

G(r,r',Z- Z') =- f cosmv/---_dv/
2 7r .)

0

(19)

R = _r 2 + r '_ - 2rr' cosy/+(Z - Z') 2 . (20)

For an arbitrary surface function f, we define the single and double layer operators, $ and d, by the

equations

and

b

s[ f ](r,Z) : j f (Z')s(r,Z - Z')dZ' (21)
61

b

d[f ](r,Z) = j f(Z')d(r,Z- Z')dZ' , (22)
_2

where the kernels s and d are given by

and

s(r,Z- Z') = G(r,I,Z- Z')

d(r,Z- Z')= (r,l,Z- Z').
or

The integrals in (21-22) are well defined for points (r, Z) not on the stretched duct surface.

We define additional field operators by calculating radial and axial derivatives of s and d.

by s r the operator

bsr[f](r,Z ) = f](r,Z) = Jf(Z')sr(r,Z- Z')dZ',
12

where

(23)

(24)

Denote

(25)





CS /

Define the field operators s z , Szz, d,, d z , dzz and associated kernels in a similar fashion.
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(26)

Using results from Helmholtz potential theory (reference ***Courant & Hilbert***), the scattered

pressure can be written as a sum of single and double layer Helmholtz potentials.

Q,(r,Z) = $[Q, ](r, z) + d[Q: ](r,Z) (27)

Equations (18a) and (18g) are satisfied by (27). The layer densities QI and Q2 are unknown surface

functions. Once the densities are determined, (27) is used to obtain the scattered field at any desired

location. We will show later that QI is related to the jump in the normal derivative of scattered pressure

across the duct surface and Q2 is related to the jump in scattered pressure.

Surface Operator Notation

In order to apply the boundary conditions (18b-c) to (27), it is necessary to evaluate directly the

single and double layer potentials and their derivatives on the stretched duct surface. The resulting one

dimensional surface operators have both singular and nonsingular parts.

For Z _ [a, b] and sufficiently smooth f, we define the surface operators S and D by

b

S[y](z) = J f(Z')S(Z- Z')dZ' (28)
a

and
b

D[f](Z) = _f(Z')D(Z- Z')dZ', (29_
a

where the kernels S and D are given by

S(Z- Z') = s( I,Z- Z') (30)

and

D(Z-Z')--d(1,Z-Z'). (31)

The operators S,, S z , Szz, D,, D z, Dzz and associated kernels are similarly defined.
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Singular Kernel Analysis

All of the above kernels are singular for Z - Z' = 0. We list without proof the asymptotic behavior

of the kernels for [Z - Z' t << 1. The singular portions of the kernels are obtained by local analyses of the

Green' s function (19) and its derivatives. All kernels are written as sums of singular and bounded terms.

Bounded kernels are denoted by the superscript B.

S(Z- Z')= - _t, lz- z'l+ S_(Z - Z') (32)

st(z- z')=_#,lz- z'l+s:(z- z,)
4re

(33)

sz(z-z') 1- +Sff(Z-Z') (34)
2n'(Z'- Z)

Szz(Z_Z, ) 1 4(tc2-m2) +1= 4 lnlZ- Z'] + S_z(Z- Z') (35)
2zr(Z- Z') 2 16zc

D(Z- Z')=_l t,_Z- Z'I+J(Z - Z') (36)

Dr(Z_Z,) 1 4(_c2-m2) +3= + t.lz- z'l+Dy(z- z') (37)
2rc(Z - Z')-" 16zr

1

Dz(Z- Z')- 4n-(Z'- Z) + D_(Z- Z') (38)

Dzz(Z_Z, ) 1 4Qc2-3m2) +3= + t_tz-z'l+D_z(z-z') (39)
4Jr(Z - Z') 2 32_r

The leading behavior for the kernels (32), (33), and (36) is logarithmic. Therefore, the associated

operators are weakly singular. The leading terms for the kernels (34) and (38) are of the Cauchy type.

While the kernels (35), (37), and (39) are of the strongly singular Hadamard type. Integrals with Cauchy

and Hadamard kernels are divergent and must be interpreted in the finite part sense.





All of theabovekernelshavethe logarithmicportionsextracted.

are well definedtheoreticallybut difficult to achievenumerically.

13

Integrationsinvolvingtheseterms

This problem is mitigated by the

development of analytical results for the associated operators. Examples of this, as well as analytical

results for the Cauchy and Hadamard terms, are presented in a later section. Calculations involving the

continuous portions of the kernels are performed by straightforward numerical integration.

Layer Continuity Properties

Using the above operator notation, we state well-known continuity properties for the single and

double layers and their derivatives as a field point approaches the stretched duct surface from the interior

or exterior of the duct. For sufficiently smooth f(Z) with Z _ (a,b), we have the following results (see

reference ***Courant & Hilbert***):

l_m S[f](r,Z) = S[f](Z) (40)

fimd[f](r,Z) = T-l f(z)+I)[f_Z) (41)

lim $,[f ](r,Z) : -T-I f(zI + S,[f ](Z) (42)
r -9, l

limd,[f_r,Z) = D [f](Z) (43)
r -q. l ±

lira Sz[f](r,Z ) = Sz[f](Z ) (44)
r--*l

lira $zz[f](r,Z) = Szz[f](Z) (45)
r--_l ±

li T dz[f](r,Z ) = _/d-_-f (Z)+ l)z[y](z ) (46)
Z aL5

-LaW(z 
lim dzz[ f ](r'Z) = +2 az 2 "-" + Dzz[f](z) (47)r_,v

By applying (40-43) to (27) we establish the previously mentioned relationships between the layer

densities and scattered pressure surface quantities.





Oi(Z)-O_:(z)= -o__(z)

:_,.,z,
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(48)

(49)

Boundary_ Integral Equations

Equations (18a-c) and (18g) are replaced by an equivalent system of integral equations for Qz and

(2_,. Using the operator notation (28-29, etc.) and the continuity results (40-47), the boundary conditions

(18b-c) can be written as

(50a)

and

[O,](z)

= iM_a(Z) C_[e,B3xA4r, e cTZ 2 M, Q,_I,Z) Z_(a,b)

(50b)

where | is the identity operator.

To obtain a unique solution of the system (50a-b), we must establish requirements on the layer

densities at the duct leading and trailing edges. This information is provided by the as yet unsatisfied

BVP equations (18d-f). Applying the layer representation for the scattered pressure to (18d-0 yields

e Mre "_" {s,[O,](1,z')+ddQ_]U,z')}az' =- (1,Z')dZ' (55c)

oo cO

and

Q2(a) = 0 , (50d)

f $[Q'](r'Z)+d[Q2] (r'Z)d_ <
9_

9t any region in r - Z plane (50e)
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The boundary value problem (18a-g) is thus replaced by the equivalent boundary integral equation

formulation (50a-e). Equations (50a-b) comprise a system of strongly singular integro-differentiai

equations.

Elaborate techniques are required to solve (50). For clarity, we consider the solution of (50) under

simplified circumstances of practical interest. For a- 0 (hard interior wall) in (50b), we obtain the

result Q_ (Z) - 0. This yields the classical Neumann boundary integral equation

CQ, (l,Z) Z _(a,b) (51a)o,[ ](z) -

and auxiliary conditions

,.1 /17

f e-';i_'Z'd [Q2](I )dZI" _Zr ?

or5

=- e M, 1, Z')dZ'

-oo

(51b)

Q:(a)=O , (51c)

f d[Q2](r,Z)d_<oo 91 any region in r - z plane (51d)

Note that (5 lb) is satisfied trivially for M r --0.

The solution of (51) for cylindrical ducts has been studied in the literature recently (references ***-

***). The referenced works differ in their derivations, depth of kernel analyses, and solution techniques.

In reference ***AIAA paper***, the analyses and techniques similar to those presented here were

applied to (51). For the first time using boundary integral techniques, continuous portions of the acoustic

field were calculated quickly (several minutes on a PC) and accurately. This was made possible by

applying advanced analytical and numerical methods to the singular integrals in (51).

Also of interest are "small" inflow Mach number situations. Such conditions occur at take-off and

landing for example. Ignoring terms in (50) smaller than O(1)form F --_ 0, yields the approximate

system





***CHECK THISONE OUT FORTHEHARD WALL CASE***

S [Q,](l,a-)+d[Q:](1,a-)- c_, (l,a)
r C_ "

Q:(a)=o .

f $[Q,](r,Z)+d[Q2](r,Z)td_ < oo

Lj ) _,- +s [O,](Z)+D_[O_](z)- -(_,z)z_(a,h)
2 _ Or

imct(Z) } irna(Z) (1 I))[Q:](Z)-,ma(Z)f14 S [O,](Z) T -k 5I+ fl_-7--O'(l'Z)

9_ any region in r - Z plane

In (52c) the notation a- implies the limit as Z approaches a from the let_.

In the next section, the solution of (52) will be examined in detail.

equations for 0 _<M F <_0.4 *** THIS RANGE MAY CHANGE -

CALCULATIONS TO VERIFY*** is demonstrated in the results section.

equations (50) will be considered in future research by the authors.
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(52a)

Z _(a,b) (52b)

(52c)

(52d)

(52e)

The validity of the approximate

NEED SOME HARD WALL

The solution of the full
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List of Symbols

axial coordinate of duct trailing edge in moving frame

axial coordinate of duct leading edge in moving frame

ambient sound speed

= mA'.Mrz P nondimensional characteristic wave number of m-th circumferential mode

ratio of duct length to diameter

circumferential mode number

= V/c flight Mach number

= rz_/c tip Mach number (based on duct radius)

number of fan blades

number of liner segments

number of observers for TBIEM3D output

total acoustic pressure

m-th circumferential coefficient of total pressure

incident acoustic pressure

m-th circumferential coefficient of incident pressure

scattered acoustic pressure

m-th circumferential coefficient of scattered pressure

cylindrical coordinates in frame of reference attached to duct

duct radius

radial coordinate of spinning point dipoles

time



l"

a(z)

K"

Po

,:,(z)

¢(z)

thrust from fan

duct speed

axial locations of liner segments

= poc[_(Z)- icr(Z)] segmented, specific acoustic admittance on interior duct wall

piecewise specific acoustic admittances

f_

= "¢1- M "- compressibility (stretching) parameter

= k//3 nondimensional stretched characteristic wave number

ambient density

segmented, acoustic susceptance on interior duct wall

segmented, acoustic conductance on interior duct wall

shaft speed (radians/second)
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Introduction

This document describes the ducted fan noise prediction computer program TBIEM3D (Ihin duct,

Boundary Integral Equation Method, 3 Dimensional). The scattering of fan generated noise by a finite

length, infinitesimally thin circular cylinder in a uniform flow field is considered. The program, based on a

boundary integral equation method (BIEM), calculates circumferential modal coefficients of the acoustic

pressure at user specified field locations. TBIEM3D features include versatility, rapid calculations, and

ease of use. Theoretical and computational details can be found in references 1-4.

In a flame of reference attached to the duct, the fan generates spinning acoustic modes. The thrust

component of fan loading noise is approximated by a collection of spinning point thrust dipoles. A

precise mathematical representation for the acoustic field due to this configuration has been implemented.

In many cases, TBIEM3D can be easily adapted to accommodate other source fields.

TBIEM3D employs cylindrical coordinates in a frame of reference attached to the engine (figures 1-

3). The coordinate origin is at the center of the fan disc. The fan and duct translate in the +Z (axial)

direction with uniform speed /7 N 8 equally spaced blades comprise the fan. The shaft rotates with

speed f2 (figure 2).

The total acoustic pressure in the sound field is split into known incident and unknown scattered

parts:

Assuming linear conditions, all dependent acoustic variables can be expressed as superpositions of

spinning modes. For example, the scattered pressure has the form

a¢,

t

y" P_ (r,Z)e (2)P_(r._u,Z.t) = " ,_,'.l Q,-_,,
m= -a

Incident and total acoustic pressures are written similarly. Modal amplitudes are calculated term by term

The TBIEM3D code must be run separately for each desired mode.



The ductexteriorishardandthe interior may be hard or lined. Passive noise treatment is modeled bv

an a.,dsymmetric, locally reactive, segmented liner with user specified admittances The definition of

specific acoustic admittance used by TBIEM3D

a(Z) = poc[¢(Z)-io_Z)] (3)

is consistent with the time factor e `'_'_z' in (2). Regions of the duct interior near the leading and trailing

edges are assumed hard (figure 3). Any interior wall segment may also be rigid. These comments are

summarized by the equation

oa, Z __(Z,,Z,_,) j= 1.... N:

(4)

BIEM methodology is a three step process: Step 1) A Helmholtz boundary value problem (BVP) for

the modal coefficients in (2) is derived. Step 2) Using layered Helmholtz potentials, the BVP is

converted to a boundary integral equation formulation that features a set of hypersingular integral

equations for the unknown Helmholtz layers. Step 3) The integral equations are solved and the acoustic

field calculated from the Helmholtz potential representation.

The TBIEM3D code is written in the FORTRAN programming language and employs IMSL

mathematical library routines. TBIEM3D should be implementable on any computer that can

accommodate FORTRAN and IMSL Some code modification may be required. For minimally adequate

computational performance, a Pentium 133 processor (or equivalent) with 32 megabytes of RAM is

recommended

TBIEM3D input is relatively simple. Geometric, kinematic, and liner parameters are required. If a

source description other than the one described above is desired, then the user must supply FORTRAN

subroutines for the calculation of the incident field and its radial derivative. Output from TBIEM3D

consists of the modal coefficients of the complex pressure components [see equations (1-2)] at user

specified field points. Postprocessing of results is left to the user.



The key featureof TBIEM3D is the ability to computeanyportion of the soundfield without the

needto calculatetheentirefield. Competingmethodssuchasfinitedifferencesandfiniteelementslack

this property. Other positive attributes include reducedconsumptionof computationalresources,

enhancednumericalaccuracy,versatility,couplingof radiationandpropagationboth forwardandaft, and

validity over a wide range of frequencies. Consequently,the TBIEM3D code is well suited for

parametriccalculations Many engineering studies of interest can be handled by TBIEM3D

Questions, comments, and requests for discussions should be addressed to mhd314@aol.com



Limitations and Comments

1)

2)

At present, the TBIEM3D code can treat "small" Mach number inflow. Results obtained for

,_.1 > 0.4 may be questionable TBIEM3D with no inflow restrictions will be made available when

complete.

For large values of x, TBIEM3D computational time and storage requirements can increase

considerably. Therefore, at typical fan operating conditions, it is recommended that the user calculate

a maximum of three circumferential modes. Efforts are underway to improve TBIEM3D

performance for high frequencies.

3) It is well known from the theory of wave propagation in an infinite, hard walled duct that resonance

occurs at certain discrete frequencies. At these eigenfrequencies, the infinite duct problem is

unsolvable. Theoretically, the finite, hard walled interior duct is solvable at all frequencies. Ill-

conditioning in the TBIEM3D numerical system, however, is experienced at and near the infinite duct

eigenfrequencies. TBIEM3D results at these eigenfrequencies show evidence of resonance but

appear plausible. The numerical correctness of TBIEM3D at resonance has not been established.

Therefore users should examine TBIEM3D results carefully when the hard wall interior option is

activated.

4)

5)

For some applications, it may be convenient to place the sources outside the duct.

achieved with TBIEM3D. The user must have either a > 0, b < 0, and/or !"0 > r_.

This is easily

Since the duct is approximated by an infinitely thin cylinder, the acoustic pressure is discontinuous

across the duct surface. Consequently, evaluation of the acoustic pressure on the duct wall is

ambiguous. It is recommended that if the pressure on the interior duct surface is required, then the

user should place the observer a small distance off the duct toward the interior

8



Operating Instructions

TBIEM3D operating parameters consist of a one line identifier, output file name and path, and

physical parameters. The code generates one output file containing values of program parameters and the

complex modal coefficients of incident, scattered, and total pressure at user specified field points. The

output file is associated with logical unit 9. Access of unit 9 elsewhere in the calling program can lead to

errors and should be avoided_ COMMON statements in TBIEM3D should be examined to avoid

conflicts with the user program.

To activate TBIEM3D, the user's calling program must have the FORTRAN statement

CALL TBIEM3D( ident, outfile, m, N B, RPM, r_, a, b, r o, T, c, Po, V,

3.1=1

°o,.t,on);',

are described in table 1. S! units are required for dimensional variables.

(s)

in (5) denotes a one dimensional array of length N Variables in the argument list

The TBIEM3D output file contains the case identifier and program parameters followed by NoB s

formatted lines containing the dimensional (pascals) complex modal coefficients of incident, scattered,

and total acoustic pressure For each observer point, TBIEM3D writes the pressure components

according to the following FORTRAN statements:

600

WRITE(6,600) r, Z, Re[P,'],

FORMAT(BE 11.4)

,m[P']



Examples

Three examples are presented in this section to demonstrate TBIEM3D features and usage.

Kinematic parameters were chosen to simulate actual ducted fan engine operating conditions

( ,_,1_ = 0.40, Mrz p = 1.22, N B = 20, L o = 0.50 ). The examples differ in the acoustic treatment on

the duct interior. Admittances for the three cases are given below. All calculations were per_brmed on a

Pentium 133 laptop computer with 32 megabytes of RAM. Graphical results displayed here are not part

of TBIEM3 D.

For each of the three cases, two dimensional portions of the sound field are computed. Acoustic

pressure and sound pressure level contours for the first modal coefficient are plotted in figures 5-7. The

specific acoustic admittances used for the calculations do not necessarily correspond to actual conditions

but were chosen for demonstrative purposes. Figure 4 contains the FORTRAN calling program that

generated the results for figures 5-7.

Example 1 Hard inlet and hard exhaust. See figures 5a-b. Three minutes computational time required

for 15000 field points.

Admittance: a(Z) = 0 Z c[a,b]

Example 2 Lined inlet (one segment) and hard exhaust. See figures 6a-b. Five minutes computational

time required for 15000 field points

Admittance: a(Z)={lo-i" elZC(0'0"475)sewhere

Example 3 Lined inlet (one segment) and lined exhaust (one segment). See figures 7a-b Five minutes

computational time required for 15000 field points.

-t Z _(0,0.475)
Admittance: a(Z) : .5 Z E(-0.475,0)

elsewhere

1o



In fimJres 8a-b, comparisons between the three cases in both the nearfield and fhrfield are displayed

Sound pressure levels for the first modal coefficient on an arc of 200 field points about the duct center

are calculated. The radius of the arc is ten meters for the farfield example (figure 8a) and one meter for

the nearfield example (figure 8b) and extends from the forward duct axis to the aft duct axis The results

are plotted to show the effects of passive noise treatment. Calculations required approximately one

minute.
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[3] R. St. John, M.H. Dunn, and J. Tweed: Acoustic Scattering Problems in Two Dimensions; In

Progress.

[4] J. Tweed, M.H. Dunn, and R. St. John: On the convergence of Algorithms for the Numerical Solution

of a Finite-Part Integral Equation; In progress.

11



Variable

/dent

outfile

m

N_,

RPM

rD

a

b

ro

T

C

Po

NL

z_irOBS

Description

Character*80 variable; case identifier

Character*80 variable; output file name

Integer; Circunfferential mode number

Integer; Number of fan blades

r

Real; shaft speed (revolutions per minute)

Real; duct radius (meters)

Real; axial coordinate of duct trailing

edge (.meters)

Real; axial coordinate of duct leading

edge (meters)

Real; radial location of spinning dipoles

tmeters)

Real; thrust from fan _kilonewtons)

Real; Ambient sound speed (meters per

second)

Real; Ambient density (kilograms per

cubic meter)

Real; Engine speed (meters per second)

Integer; number of liner segments

Real; axial coordinates of liner segments

(meters)

Complex; acoustic admittances (non

dimensional) for segmented liner

Integer; number of observers for output

Real; radial coordinates of observer points

(meters)

Real; axial coordinates' of observer points

(meters)

Comments

80 ASCII characters maximum

80 ASCII characters maximum; file path

ma), be included

See (2) and limitation 2)
r i

See figures 1-3; N e > 0

See figures 1-3

See figures 1-2

See figures 1-2

See figures 2-3

V/c < 1; see limitation 1)

For hard wall interior set N L : 0 in

which case limitation 3) may apply

See (3-4) and figure 3; if N_. = 0, then

omit; a<Z <Z,_ 1 <b i=l .... N L
r,

See (3-4) and figure 3; if N_ = 0, then

omit; some segments may be hard, i.e.,

ct =0

0 < No, s < 105 ; Large values of No, s

can lead to excessive computational time

See limitation 5)

Table 1 TBIEM3D Input Parameters
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Figure 4" Calling Program for TBIEM3D Examples 1-3

C

c+++++++++++++++++++++++++++++++++++++++++

c TBIEM3D examples for user document

c+++++++++++++++++++++++++++++++++++++++++

program myBIEM
dimension ZOBS(100000),rOBS(100000)

dimension Zliner(100)

complex admit(100)

character*80 ident,outfile

ident = 'TBIEM3D Example #i'

outfile = 'c:\myBIEM.txt'

pref = 2.'10.**(-5.)

nharm = 1

nblades = 20

rpm = 3500.
radiusd = 1.0

zte = -0.5

zle = 0.5

radius0 = 0.95

thrustc = 27.0

sposnd = 300.

density = 0.4

V = 120.

C

C

c Define observer points for r-Z field

c calculations

C

C

nz = 150

nr = i00

NOBS = nz*nr

zmin = -2.

zmax = 2.

dz = (zmax-zmin)/float(nz-l)

rmin = 0.

rmax = 3.

dr = (rmax-rmin)/float(nr-l)

kount = 0

do i = l,nz

z = zmin+(i-l.)*dz

do j = !,nr
kount = kount+l

r = rmin+(j-l.)*dr

ZOBS(kount) = z

rOBS(kount) = r

enddo

enddo

C

C ...........

c Example i: Hard Wall Interior

C .......

C

NL = 0

call TBIEM3D(ident,outfile,nharm, nblades,rpm,

1 radiusd, zte, zle,radius0,thrustc, sposnd,

2 density,V, NL, Zliner,admit,NOBS,ZOBS, rOBS)



l

Figure 4 (Continued): Calling Program for TBIEM3D Examples 1-3

c Begin postprocessing for user document

c graphics - NOT part of TBIEM3D

open(unit=10,file='c:\fortl0.txt',status=
l'unknown' )

write(10,*) 'zone t = "I", i = ',nr,', j =

rewind(9)

do j = 1,15

read(9,*)

enddo

do lobs = I,NOBS

read(9,600)zz,rr, res,ais,rei,aii,ret,ait

pmag = sqrt(ret**2+ait**2+l.e-12)

spl = 10.*alogl0(pmag/pref)

write(10,*)zz, rr, spl, ret

enddo

',nz

c End postprocessing

C

C

c Example 2: Lined inlet with one segment

C ......

C

NL = 1

Zliner(1) = 0

Zliner(2) = 0.475

admit(l) = cmplx(l.,-l.)

rewind(9)

call TBIEM3D(ident,outfile,nharm, nblades,rpm, radiusd,

1 zte, zle, radius0,thrustc, sposnd, density,V, NL,

2 Zliner,admit,NOBS,ZOBS,rOBS)

c Begin postprocessing for user document

c graphics - NOT part of TBIEM3D

write(10,*) 'zone t = "i", i = ',nr, ', j = ',nz

rewind(9)

do j = 1,15

read(9,*)

enddo

do iobs = I,NOBS

read(9,600)zz,rr, res,ais,rei,aii, ret,ait

pmag = sqrt(ret**2+ait**2+l.e-12)

spl = 10.*alogl0(pmag/pref)

write(10,*)zz,rr,spl,ret

enddo

c End postprocessing

C

C

c Example 3: Lined exhaust with one segment and



Figure 4 (Continued): Calling Program for TBIEM3D Examples 1-3

c

c

c

lined inlet with one segment

NL = 2

Zliner(1) = -0.475

Zliner(2) = 0.

Zliner(3) = 0.475

admit(l) = cmplx(.5,0.)

admit(2) = cmplx(l.,-l.)

rewind (9 )

call TBIEM3D(ident,outfile,nharm, nblades,rpm, radiusd,

1 zte, zle,radius0,thrustc,sposnd, density,V, NL,

2 Zliner,admit,NOBS, ZOBS, rOBS)

c Begin postprocessing for user document

c graphics - NOT part of TBIEM3D

write(10,*) 'zone t = "I", i = ',nr,', j = ',nz

rewind(9)

do j = 1,15

read(9,*)

enddo

do lobs = I,NOBS

read(9,600)zz,rr, res,ais,rei,aii,ret,ait

pmag = sqrt(ret**2+ait**2+l.e-12)

spl = 10.*alogl0(pmag/pref)

write(10,*)zz, rr,spl,ret

enddo

c End postprocessing

stop

600 format(Sell.4)

end



CO

CW

'- ==

oN _:I_

" d

_ N
L.

01

!

0



::L

e')

CM

"_ II

"- _ z

N o
N "*

II

°_

!
0



_k



¢0

C_

oN

!

0
cq
II

Z

°_

CXl
I

0



i
r-.

i
u')

§

I

Q

I
8
Q

I

I

§

I

i

.i===

I

z

(:_ II

°_



I.B

!

_ o

II

Z

N

_ LL

_u

°_ml



W w w

_ _.__.

,13"0"0

e- _ c

.O"(3-O

"r" ._1 ... 1

I I

I I

I I

"0

0 _
0

0

0

II

L_

Z "o

°_

"_ II
m

I:1. rr Z

o-_

W l- II

o _.

o

._ _-
I_ 0

II
U.



W ww

C

(_ e" e"

.., ._ ._--,

e-- e- e.-

.o -.o -o

co e,- c
7"'7"7

! !

I I

I I

0

0

0

E

II

_..J

g_a:
_ m

0 (1)

0

W Z II
°. t"- n

..Q 0 F-

L_ c_
II



,J





A Study of Noise Radiation from a Two

Dimensional Scarf Inlet

M.H. Dunn and Richard St. John

Old Dominion University, Norfolk, Virginia

1.0 Introduction

The scarf inlet and exhaust have been recommended for the control of the

noise radiation directivity from a ducted fan engine. There has been some

experimental evidence that a scarf inlet does affect the directivity of the noise

radiation pattern from the inlet and therefore, it is a promising passive noise

control tool for aeroengines. Recently a computer code was developed at the

Old Dominion University based on the boundary integral equation method

(BIEM) for noise radiation from finite thin two dimensional ducts which

allows the study scarf inlets and exhausts. The noise source inside the duct is

taken as a point dipole source. We study the effect of the scarf inlet on noise

radiation pattern from the inlet and the exhaust of a short duct with a conven-

tional exhaust. The duct wall is assumed rigid and only one configuration of

scarf inlet is studied. It is shown that the directivity of noise radiation from

the inlet and exhaust is influenced by the presence of scarf inlet over a large

range of frequency. The main part of the present study is for a stationary duct.

However, we present some results at duct forward Mach number of M = 0.4

which indicate that the scarf inlet also influences the noise directivity even

when the duct is in motion.

2.0 The Scarf Inlet

Figure 1 shows the two dimensional scarf inlet used in this study. Note that

the upper wall is longer than the lower wall. Only one configuration of scarf

inlet with conventional exhaust was studied. The design is based on the long-

est and the shortest axial nacelle length of the Langley 12 inch ducted fan

model used in the scarf inlet test. This figure is to scale and the three circles

of radii 0.2, 2.0 and 6.0 (nondimensionalized with respect to the duct width)

indicate the arcs on which the acoustic pressure levels were calculated. The

dipole point source is at the center of these circles and is located at the axial
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position of the rotor center in the model test. The dipole source models the

thrust of the rotor with the dipole axis along the duct axis. The axial position

of the dipole corresponds to the rotor position in the Langley 12 inch ducted
fan model.

3.0 The Acoustic Code (TBIEM2D)

The acoustic code used in this study was developed at the Old Dominion Uni-

versity. It is called TBIEM2D (Thin-duct BIEM 2 Dimensional). The duct is

assumed finite in length, infinitely thin and can be in uniform forward
motion. The interior of the duct can be lined and the two duct walls do not

need to be of equal length. The liner can be segmented. In the examples given

here we have used rigid duct wall option.

The duct propagation and radiation problem is modeled as follows. The

acoustic pressure is written as the sum of the incident and scattered pressures.

The scattered acoustic pressure in the frame fixed to the moving duct satisfies

the convected wave equation which is Fourier transformed in time into a

Helmholtz partial differential equation. The boundary condition for this

equation is obtained from the incident wave and the locally reacting liner

property. The problem is then reformulated as a coupled system of one

dimensional hypersingular linear integral equations with single and double

layer sources of unknown strengths on the duct wall. The radiation condition

is automatically satisfied in the derivation of these equations but additional

conditions are imposed to insure uniqueness and physical validity of the solu-
tion.

The system of the integral equations are solved by the collocation method for

the unknown source strengths of the single and the double layer sources on

the duct wall. The scattered acoustic pressure is then calculated at any point

in the radiation field from integrals on the duct surface whose integrands

depend on the known strengths of the single and the double layer sources.

This is essentially equivalent to using the Kirchhoff formula for moving sur-

faces. The method of finding the scattered acoustic pressure is known as the

boundary integral equation method (BIEM). The scattered pressure is added

to the incident pressure to get the total acoustic pressure at the observer point.

One of the most important advantages of our approach is that the acoustic

pressure can be calculated at any point in the field without the need for calcu-
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lating the acoustic pressure elsewhere. This is in contrast to the finite differ-

ence and finite element methods which require the gridding of the space

between the duct and the observer position and calculating the acoustic pres-

sure at each grid point as well as at the observer position of interest. Thus the

boundary integral equation method results in a very efficient computation

tool for the acoustic pressure. The code TBIEM2D is run on a PC and has a

simple input for point source excitation. The entire acoustic radiation field

can be computed at a fixed observer time or at many observer times and then

animated to see the propagation of the acoustic waves in the medium as well

as the region of intense acoustic intensity and shadows.

4.0 Scarf Inlet Acoustic Results

We present our results below using nondimensional length and wave numbers
as follows. All lengths are nondimensionalized by the duct width

W = 0.30 m. The nondimensional wave number is defined as k = o_W/c

where o_ and c are the radian frequency and the speed of sound taken as 340

rn/s. In all the calculations presented, here, the source strength of the dipole

inside the duct is kept fixed. Therefore, the relative levels of the acoustic pres-
sure for the scarfed and conventional (unscarfed) inlet remain unchanged at
the same nondimensional distance from the duct.

Figure 2 presents the directivity of the acoustic pressure level at the distances

0.2, 2.0 and 6.0 from the source and at the wave numbers k = 18 for both the

scarf and conventional inlets at M F -- 0. Figures 3 and 4 show similar

results at k = 27 and 36, respectively. We first consider the results of Fig. 2 at

k = 18. The circle at the radius R = 0.2 is inside the duct and the directivity of

the acoustic pressure level is clearly very similar to an axial dipole in the free
field for both scarfed and unscarfed inlets. In the inlet radiation field, the scarf

inlet radiation pattern becomes asymmetric with respect to the duct axis with

a slight noise reduction in the upper and lower quadrants at angles of about

60 ° at radii R = 2 and R = 6. At R = 6, there is a slight increase in the acous-

tic pressure level of the noise radiated from the exhaust in the lower quadrant
from the duct in scarf inlet. At k = 27 and k = 36, there are more lobes in the

inlet and the exhaust radiation patterns of the two ducts. The asymmetry of

the radiation pattern of the scarf inlet, as compared to the conventional inlet,

is clearly visible in Figs. 3 and 4. In the inlet radiation field, there is a reduc-

tion of the noise levels in the upper quadrant and an increase in the lower
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quadrant for the scarf inlet as compared to the unscarred inlet. This effect is

seen at large angles to the duct axis. There is some small changes in the

exhaust radiation field by the scarf inlet at large angles to the duct axis.

Figures 5 to 7 show the directivity of the acoustic pressure level at three

radial distances from the source and at three wave numbers for the scarf and

conventional inlets at M F - 0.4. The effect of the motion of the duct on the

radiation pattern inside the duct is now much more pronounced than at

M F = 0. In the exterior of the duct and for the inlet radiation, there is a

reduction on of the noise level in the upper quadrant and an increase in the

noise level in the lower quadrant for the scarf inlet as compared to the con-

ventional inlet at large angles from the duct axis. More surprising is the

change in radiation pattern from the exhaust for the two inlet designs, partic-

ularly at k - 18. This may have important implication for the a real engine

noise radiation.

As suggested by Dr. Robert Dougherty of the Boeing Commercial Airplane

Group, a study of the relative acoustic power radiated in different quadrants

can be useful in assessing the effect of scarf inlet on the control of noise radi-

ation from ducted fans. We define an indicator of the acoustic power by the

following relation for M F - 0:

_o + _/2 ,2P = p (R, _)d_',
_o

where _0 is 0, re/2, rt and 3_:/2 for the first to fourth quadrants, respec-

tively. Note that the first and the fourth quadrants correspond to the upper and

lower inlet quadrants, respectively. In figures 8 to 11, we present

20 log = ASp L for a large range of values of wave number k in the

four quadrants where subscripts u and s refer to the unscarfed and scarfed

inlets. A positive value of this quantity indicates that the conventional inlet

radiates more acoustic power than the scarf inlet in that quadrant. From these

figures, it is seen that for the range of frequencies considered, the scarf inlet

radiates less acoustic power in the upper quadrant of the inlet and more
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power in the lower quadrant than the conventional inlet. This is clearly seen

in Fig. 12 where we have plotted Figs. 8 and 11 on the same plot. It is seen

that the radiated power in each of the inlet quadrants is a function of the wave

number. Also there is an interesting symmetry with respect to the 0 dB line in

this figure which indicates that the function of the scarf inlet is essentially to

redirect the acoustic power from the upper quadrant to the lower quadrant.

Figures 9 and 10 show the relative acoustic power radiation in the upper and

the lower quadrants of the exhaust. There are both an increase and a decrease

of acoustic power radiation of the duct with scarf inlet as compared to the

conventional inlet depending on the wave number. There is no clear trend

emerging from power radiated from the exhaust in our study.

In Figures 8 to 11, we have shown the condition number of the matrix of the

coefficients of a set of functions used in the boundary integral equation

method. Large condition numbers indicate sensitivity to errors of the inver-

sion of the matrix, except at isolated wave numbers, it appears that the condi-

tion numbers are generally small and the precision of our calculations can be

trusted.

5.0 Concluding Remarks

In this study, we have shown that the scarf inlet has the potential of redirect-

ing the acoustic power into the quadrant with shorter inlet length. This behav-

ior extends to a large range of wave numbers and appears to be also effective

at forward speed. There are also changes in the exhaust radiation pattern

which do not appear to follow a clear trend. These changes require further
studies. We have also shown the usefulness of the boundary integral equation

method code TBIEM2D used in our study. All calculations were performed

on a PC at a short execution time.
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